training

 

Spark V2 for Developers – 3 Days

Course Description

This course will introduce Apache Spark. The students will learn how to use Spark for data analysis and write Spark applications.

Audience

Developers / Data Analysts

What to Bring

Prerequisites

  • Familiarity with either Java / Scala / Python language (our labs in Scala and Python – we provide a quick Scala introduction)
  • Basic understanding of Linux development environment (command line navigation / running commands)

Outline

  • Scala primer
    • A quick introduction to Scala
    • Labs : Getting know Scala
  • Spark Basics
    • Big Data, Hadoop, Spark
    • What’s new in Spark v2
    • Spark concepts and architecture
    • Spark eco system (core, spark sql, mlib, streaming)
    • Labs : Installing and running Spark
  • Spark Shell
    • Spark shell
    • Spark web UIs
    • Analyzing dataset – part 1
    • Labs: Spark shell exploration
  • RDDs (Condensed coverage)
    • RDDs concepts
    • Partitions
    • RDD Operations / transformations
    • More detailed coverage if required  : RDD types, Key-Value pair RDDs, MapReduce on RDD
    • Labs : Unstructured data analytics using RDDs
  • Spark Dataframes & Datasets
    • Learning about Dataframe / Dataset
    • Programming in Dataframe / Dataset API
    • Loading structured data using Dataframes
    • Caching and persistence
    • Labs : Dataframes, Datasets, Caching
  • Spark API programming (Scala / Python)
    • Introduction to Spark  API
    • Submitting the first program to Spark
    • Debugging / logging
    • Configuration properties
    • Labs : Programming in Spark API, Submitting jobs
  • Spark SQL
    • Spark SQL concepts and overview
    • Defining tables and importing datasets
    • Querying data using SQL
    • Handling various storage formats : JSON / Parquet / ORC
    • Labs : querying structured data using SQL; evaluating data formats
  • Spark and Hadoop
    • Hadoop Primer : HDFS / YARN
    • Hadoop + Spark architecture
    • Running Spark on Hadoop YARN
    • Processing HDFS files using Spark
    • Spark & Hive
  • Machine Learning (ML / MLib)
    • Machine Learning primer
    • Machine Learning in Spark : MLib / ML
    • Spark ML overview (newer Spark2 version)
    • Algorithms : Clustering, Classifications, Recommendations
    • Labs : Writing ML applications
  • GraphX
    • GraphX library overview
    • GraphX APIs
    • Labs : Processing graph data using Spark
  • Spark Streaming
    • Streaming overview
    • Evaluating Streaming platforms
    • Streaming operations
    • Sliding window operations
    • Structured Streaming
    • Labs : Writing spark streaming applications
  • Spark Performance and Tuning
    • Broadcast variables
    • Accumulators
    • Memory management & caching

MindIQ

Print Friendly, PDF & Email