java programming

 

Java Programming Training, v5, v6, v7 and v8 – 5 Days

Course Description – Java Programming Training

This Java Programming training course explicitly targets less experienced programmers, providing them with a thorough step-by-step introduction to Java programming. It lays a firm foundation for further study of Java. There are a large number of example programs and many labs.

An important thrust of this course is to teach programming from an object-oriented perspective. It is often difficult for programmers trained originally in a procedural language to start “thinking in objects.” This course introduces object-oriented concepts very early, and Java is developed in a way that leverages its object orientation. Most of the course emphasizes simple classes without inheritance. The last chapter introduces inheritance and polymorphism, along with interfaces and collections.

This revision of the course targets the Java 8 language and Core API.

What You Will Learn

  • Chiefly, learn to program effectively in the Java language.
  • Understand the Java software architecture, and the design decisions which make Java software portable, efficient, secure and robust.
  • Learn how to configure a simple Java development environment.
  • Know the grammar, data types and flow control constructs of the Java language for simple procedural programming.
  • Understand Java as a purely object-oriented language, and implement software as systems of classes.
  • Implement and use inheritance and polymorphism, including interfaces and abstract classes.
  • Design appropriate exception handling into Java methods, and use the logging API appropriately.
  • Use Java as a functional language, making appropriate choices of tools including inner classes, functional interfaces, method references, and lambda expressions.
  • Use the Stream API for efficient processing of data sets.

Prerequisites

No prior Java experience is required, but students must be experienced programmers in another third-generation (high-level) language. See the overview for suggestions about pace and scope for different backgrounds.

Outline

Chapter 1. The Java Environment

  • Overview of Architecture
  • Forms for Java Software
  • J2SE, J2EE, and J2ME Platforms
  • Java Virtual Machine
  • The Core API
  • Java Runtime Environment
  • Java Developer’s Kit
  • Java Class Path
  • Classes
  • Built-In Streams and Command-Line Parameters

Chapter 2. Language Fundamentals

  • Source File Format
  • Application Classes
  • Code Grammar and Expressions
  • Identifiers
  • Literals
  • Operators
  • Calling Methods
  • Variable Parameter Lists (“varargs”)

Chapter 3. Data Types

  • Strict Type Checking
  • Primitive Types
  • Numeric Types
  • Characters and Booleans
  • Enumerations
  • Type Conversion
  • Formatted Output
  • Object References
  • Comparing and Assigning References
  • Strings
  • Arrays

Chapter 4. Flow Control

  • The main Method
  • Calling and Returning from Methods
  • Conditional Constructs
  • Looping Constructs
  • Processing Arrays
  • Looping and Enumerations
  • Processing Varargs
  • The Flow-Control Operator
  • Break and Continue
  • Recursion

Chapter 5. Object-Oriented Software

  • Complex Systems
  • Abstraction
  • Classes and Objects
  • Responsibilities and Collaborators
  • UML
  • Relationships
  • Visibility

Chapter 6. Classes and Objects

  • Java Classes
  • Constructors and Garbage Collection
  • Naming Conventions and JavaBeans
  • Relationships Between Classes
  • Using this
  • Visibility
  • Packages and Imports
  • Overloading Methods and Constructors
  • JARs

Chapter 7. Inheritance and Polymorphism in Java

  • UML Specialization
  • Extending Classes
  • Using Derived Classes
  • Type Identification
  • Compile-Time and Run-Time Type
  • Polymorphism
  • Overriding Methods
  • The @Override Annotation
  • Superclass Reference

Chapter 8. Using Classes Effectively

  • Class Loading
  • Static Members
  • Statics and Non-Statics
  • Static Initializers
  • Static Imports
  • Prohibiting Inheritance
  • Costs of Object Creation
  • Strings and StringBuffers
  • Controlling Object Creation
  • Understanding Enumerated Types
  • Stateful and Behavioral Enumerations

Chapter 9. Interfaces and Abstract Classes

  • Separating Interface and Implementation
  • UML Interfaces and Realization
  • Defining Interfaces
  • Implementing and Extending Interfaces
  • Abstract Classes

Chapter 10. Collections

  • Dynamic Collections vs. Arrays
  • UML Parameterized Type
  • Generics
  • Using Generics
  • The Collections API
  • The Collection<E> and List<E> Interfaces
  • The ArrayList<E> and LinkedList<E> Classes
  • Looping Over Collections: Iterable<E>
  • Collecting Primitive Values: Auto-Boxing
  • Using Wildcards with Generic Types
  • Iterators and the Iterator<E> Interface
  • Maps and the Map<K,V> Interface
  • Sorted Collections
  • The SortedSet<E> and SortedMap<K,V> Interfaces
  • The Collections Class Utility
  • Algorithms
  • Conversion Utilities

Chapter 11. Exception Handling and Logging

  • Reporting and Trapping Errors
  • Exception Handling
  • Throwing Exceptions
  • Declaring Exceptions per Method
  • Catching Exceptions
  • The finally Block
  • Catch-and-Release
  • Chaining Exceptions
  • try-with-resources
  • Logging
  • The Java SE Logging API
  • Loggers
  • Logging Levels
  • Handlers
  • Configuration
  • Best Practices

Chapter 12. Nested Classes

  • Nested Classes
  • Static Classes
  • Inner Classes
  • Relationship with the Outer Object
  • Local Classes
  • Enclosing Scope
  • Anonymous Classes

Chapter 13. Functional Programming

  • Passing Behavior as a Parameter
  • Inner Classes
  • Functional Interfaces
  • Built-In Functional Interfaces
  • Lambda Expressions
  • Scope and Visibility
  • Deferred Execution
  • Method References
  • Creational Methods
  • Designing for Functional Programming
  • Default Methods

Chapter 14. Streams

  • The Stream Processing Model
  • Streams
  • Relationship to Collections
  • Advantages and Disadvantages
  • Iterating, Filtering, and Mapping
  • Primitive-Type Streams
  • Aggregate Functions and Statistics
  • Sorting
  • Generating, Limiting, and Reducing
  • Finding and Matching
  • Grouping
  • Flattening and Traversing
  • Sequential vs. Parallel Processing

System Requirements

Hardware Requirements (Minimum)Core i5, 1.8 GHz, 4 gig RAM, 500 meg disk space.
Hardware Requirements (Recommended)Core i5, 2.8 GHz, 8 gig RAM, 500 meg disk space.
Operating SystemTested on Windows 7/8, Mac OS 10.5.2.
Network and SecurityLimited privileges required
Software RequirementsAll free downloadable tools.

Other courses to explore:

Intermediate Java Programming – Onsite, Custom, Lowest Price

Advanced Java Programming – Onsite, Custom, Lowest Price

Java Development for Secure Systems – Onsite, Custom

java training
Java training

 MindIQ

Print Friendly, PDF & Email